Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging.

Identifieur interne : 002597 ( Main/Exploration ); précédent : 002596; suivant : 002598

Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging.

Auteurs : Mengmeng Zhang [États-Unis] ; Guojun Chen ; Rajeev Kumar ; Bingqian Xu

Source :

RBID : pubmed:24119447

Abstract

BACKGROUND

Enzymatic hydrolysis of lignocellulosic biomass (mainly plant cell walls) is a critical process for biofuel production. This process is greatly hindered by the natural complexity of plant cell walls and limited accessibility of surface cellulose by enzymes. Little is known about the plant cell wall structural and molecular level component changes after pretreatments, especially on the outer surface. Therefore, a more profound understanding of surface cellulose distributions before and after pretreatments at single-molecule level is in great need. In this study, we determined the structural changes, specifically on crystalline cellulose, of natural, dilute sulfuric acid pretreated and delignified cell wall surfaces of poplar, switchgrass, and corn stover using single molecular atomic force microscopy (AFM) recognition imaging.

RESULTS

The AFM tip was first functionalized by a family 3 carbohydrate-binding module (CBM3a) (Clostridium thermocellum Scaffoldin) which specifically recognizes crystalline cellulose by selectively binding to it. The surface structural changes were studied at single molecule level based on the recognition area percentage (RAP) of exposed crystalline cellulose over the imaged cell wall surface. Our results show that the cell wall surface crystalline cellulose coverage increased from 17-20% to 18-40% after dilute acid pretreatment at 135°C under different acid concentrations and reached to 40-70% after delignification. Pretreated with 0.5% sulfuric acid, the crystalline cellulose surface distributions of 23% on poplar, 28% on switchgrass and, 38% on corn stover were determined as an optimized result. Corn stover cell walls also show less recalcitrance due to more effective pretreatments and delignification compared to poplar and switchgrass.

CONCLUSIONS

The dilute acid pretreatment can effectively increase the cellulose accessibility on plant cell wall surfaces. The optimal acid concentration was determined to be 0.5% acid at 135°C, especially for corn stover. This study provides a better understanding of surface structural changes after pretreatment such as lignin relocation, re-precipitation, and crystalline cellulose distribution, and can lead to potential improvements of biomass pretreatment.


DOI: 10.1186/1754-6834-6-147
PubMed: 24119447
PubMed Central: PMC3852143


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging.</title>
<author>
<name sortKey="Zhang, Mengmeng" sort="Zhang, Mengmeng" uniqKey="Zhang M" first="Mengmeng" last="Zhang">Mengmeng Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602, USA. bxu@engr.uga.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Guojun" sort="Chen, Guojun" uniqKey="Chen G" first="Guojun" last="Chen">Guojun Chen</name>
</author>
<author>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
</author>
<author>
<name sortKey="Xu, Bingqian" sort="Xu, Bingqian" uniqKey="Xu B" first="Bingqian" last="Xu">Bingqian Xu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24119447</idno>
<idno type="pmid">24119447</idno>
<idno type="doi">10.1186/1754-6834-6-147</idno>
<idno type="pmc">PMC3852143</idno>
<idno type="wicri:Area/Main/Corpus">002443</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002443</idno>
<idno type="wicri:Area/Main/Curation">002443</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002443</idno>
<idno type="wicri:Area/Main/Exploration">002443</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging.</title>
<author>
<name sortKey="Zhang, Mengmeng" sort="Zhang, Mengmeng" uniqKey="Zhang M" first="Mengmeng" last="Zhang">Mengmeng Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602, USA. bxu@engr.uga.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Guojun" sort="Chen, Guojun" uniqKey="Chen G" first="Guojun" last="Chen">Guojun Chen</name>
</author>
<author>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
</author>
<author>
<name sortKey="Xu, Bingqian" sort="Xu, Bingqian" uniqKey="Xu B" first="Bingqian" last="Xu">Bingqian Xu</name>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Enzymatic hydrolysis of lignocellulosic biomass (mainly plant cell walls) is a critical process for biofuel production. This process is greatly hindered by the natural complexity of plant cell walls and limited accessibility of surface cellulose by enzymes. Little is known about the plant cell wall structural and molecular level component changes after pretreatments, especially on the outer surface. Therefore, a more profound understanding of surface cellulose distributions before and after pretreatments at single-molecule level is in great need. In this study, we determined the structural changes, specifically on crystalline cellulose, of natural, dilute sulfuric acid pretreated and delignified cell wall surfaces of poplar, switchgrass, and corn stover using single molecular atomic force microscopy (AFM) recognition imaging.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The AFM tip was first functionalized by a family 3 carbohydrate-binding module (CBM3a) (Clostridium thermocellum Scaffoldin) which specifically recognizes crystalline cellulose by selectively binding to it. The surface structural changes were studied at single molecule level based on the recognition area percentage (RAP) of exposed crystalline cellulose over the imaged cell wall surface. Our results show that the cell wall surface crystalline cellulose coverage increased from 17-20% to 18-40% after dilute acid pretreatment at 135°C under different acid concentrations and reached to 40-70% after delignification. Pretreated with 0.5% sulfuric acid, the crystalline cellulose surface distributions of 23% on poplar, 28% on switchgrass and, 38% on corn stover were determined as an optimized result. Corn stover cell walls also show less recalcitrance due to more effective pretreatments and delignification compared to poplar and switchgrass.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The dilute acid pretreatment can effectively increase the cellulose accessibility on plant cell wall surfaces. The optimal acid concentration was determined to be 0.5% acid at 135°C, especially for corn stover. This study provides a better understanding of surface structural changes after pretreatment such as lignin relocation, re-precipitation, and crystalline cellulose distribution, and can lead to potential improvements of biomass pretreatment.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">24119447</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging.</ArticleTitle>
<Pagination>
<MedlinePgn>147</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1754-6834-6-147</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Enzymatic hydrolysis of lignocellulosic biomass (mainly plant cell walls) is a critical process for biofuel production. This process is greatly hindered by the natural complexity of plant cell walls and limited accessibility of surface cellulose by enzymes. Little is known about the plant cell wall structural and molecular level component changes after pretreatments, especially on the outer surface. Therefore, a more profound understanding of surface cellulose distributions before and after pretreatments at single-molecule level is in great need. In this study, we determined the structural changes, specifically on crystalline cellulose, of natural, dilute sulfuric acid pretreated and delignified cell wall surfaces of poplar, switchgrass, and corn stover using single molecular atomic force microscopy (AFM) recognition imaging.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The AFM tip was first functionalized by a family 3 carbohydrate-binding module (CBM3a) (Clostridium thermocellum Scaffoldin) which specifically recognizes crystalline cellulose by selectively binding to it. The surface structural changes were studied at single molecule level based on the recognition area percentage (RAP) of exposed crystalline cellulose over the imaged cell wall surface. Our results show that the cell wall surface crystalline cellulose coverage increased from 17-20% to 18-40% after dilute acid pretreatment at 135°C under different acid concentrations and reached to 40-70% after delignification. Pretreated with 0.5% sulfuric acid, the crystalline cellulose surface distributions of 23% on poplar, 28% on switchgrass and, 38% on corn stover were determined as an optimized result. Corn stover cell walls also show less recalcitrance due to more effective pretreatments and delignification compared to poplar and switchgrass.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The dilute acid pretreatment can effectively increase the cellulose accessibility on plant cell wall surfaces. The optimal acid concentration was determined to be 0.5% acid at 135°C, especially for corn stover. This study provides a better understanding of surface structural changes after pretreatment such as lignin relocation, re-precipitation, and crystalline cellulose distribution, and can lead to potential improvements of biomass pretreatment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Mengmeng</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602, USA. bxu@engr.uga.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Guojun</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Rajeev</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Bingqian</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>10</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24119447</ArticleId>
<ArticleId IdType="pii">1754-6834-6-147</ArticleId>
<ArticleId IdType="doi">10.1186/1754-6834-6-147</ArticleId>
<ArticleId IdType="pmc">PMC3852143</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Phys Chem B. 2012 May 3;116(17):5316-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22489938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Aug 22;3:204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Chem Biomol Eng. 2011;2:121-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22432613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12503-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2007 Nov-Dec;23(6):1333-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17973399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2007 Sep 1;98(1):112-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Feb;102(3):2804-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21036603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Dec;102(24):11097-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21571527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2012 May;39(5):691-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22167347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2010 Jan;1185:119-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20146765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2005 Dec;96(18):2007-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16112488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17535923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3477-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8622961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Nov 1;15(21):5739-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8918451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Microbiol. 2005 Sep;8(3):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Mar 1;442(2):241-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22329798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2009 Dec 04;2:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19961578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2001 Jul;56(1-2):17-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11499926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2010 Feb 15;105(3):499-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19777599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2010 Jan 04;3(1):1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20047650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2013 May 7;15(17):6508-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2013 Apr 14;49(29):2980-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23400247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Micron. 2007;38(5):446-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2008 Apr 16;1(1):5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18471316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2013 Mar;110(3):737-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23042575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Jan 28;6(1):11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2012 Sep;39(9):1289-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemphyschem. 2005 May;6(5):897-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15884073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2009 Sep;100(17):3948-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19362819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2012 Aug 23;116(33):9949-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22849362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Nov 23;338(6110):1055-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23180856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2006 May;3(5):347-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16628204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 1999 Sep;127(2):185-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10527908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 24;306(5705):2206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2007 Nov;98(16):3061-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17141499</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Guojun" sort="Chen, Guojun" uniqKey="Chen G" first="Guojun" last="Chen">Guojun Chen</name>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
<name sortKey="Xu, Bingqian" sort="Xu, Bingqian" uniqKey="Xu B" first="Bingqian" last="Xu">Bingqian Xu</name>
</noCountry>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Zhang, Mengmeng" sort="Zhang, Mengmeng" uniqKey="Zhang M" first="Mengmeng" last="Zhang">Mengmeng Zhang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002597 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002597 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24119447
   |texte=   Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24119447" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020